读书阁 > 玄幻魔法 > 重生之AI教父 > 第14章 万事俱备

第14章 万事俱备(2 / 3)

期的许多算法在参数量和计算量上都有很大的冗余。

“谷歌的GoogleNet和牛津的VGGNet原本要明年才能研究出来,不过我今年参赛之后,这两个AI历史上的重要网络恐怕就要胎死腹中了吧?”

别说是现在了,截止到14年末,多余的设计仍旧大量存在与谷歌和牛津大学的算法当中。

直到15年,那个男人以残差网络ResNet夺冠ImageNet-2015,铸就了深度学习时代的AI模型的神格。

残差思想是孟繁岐此时此刻的最佳选择,一方面它会成为深度学习时代的里程碑,因为它的核心思想,就是如何把深度网络做得更加‘深’。

另一方面,它的实现和结构简洁,抛弃了大量人类看来很有道理和价值,但实际上其实用处不大的设计。

将简洁好用的结构反复重复,这也大大地降低了孟繁岐所需要的开发工程量。

AlexNet是八层的结构,各自有一些独立的设计,在此时,8层已经是革命性的深度网络了。

更深的网络特别难以训练,因此原本直到14年,谷歌和牛津才分别把这个深度推进到22层和19层。

而ResNet的思想,彻底从根本上解决了网络变深就没法顺利训练的问题。它让50,100,150,甚至1000层网络的训练成为可能。

“从去年的8,到今年的100+层,甚至1000层也可以训练。在2013年的视角来看,这一剂猛药应该够劲了。”

不仅是深度上取得了开创性的突破,ResNet的性能也同样惊人。它是第一个Top-5错误率低于人类能力的结构,单模型达到了4.6%左右。

如果综合几个不同方式训练的ResNet,平均他们的输出再去预测的话,其TOP-5错误率甚至低至3.7%。

“其实在IMAGENET上做得太准了反而是一件怪事。”考虑到后世的研究中,该数据集中的标签其实有不小的比例是错误的,越贴近百分之百的准确率反而越有一些荒诞的感觉。

ResNet的Res指residual,正经点说是残差,说得明白一些是一种短路或者是跳跃链接。

再说的浅显一点,假设原本的操作为f(x),ResNet就是把计算过程从f(x)改为f(x)+x。

这也是孟繁岐最早与付院长讨论的内容之一。

这种不带任何参数的支

最新小说: 无常道 我有一本生死簿 我拍戏从不看脸 荆棘之恋 我玩仙界版拼刀刀 都市鉴宝大师 诡秘都市 我轮回了上千次 大国重器:一个戏子也和我比? 摊牌了我就是隐形富豪